Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.332
Filter
1.
Mol Biol Rep ; 51(1): 648, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727802

ABSTRACT

BACKGROUND: Polygonatum kingianum holds significant importance in Traditional Chinese Medicine due to its medicinal properties, characterized by its diverse chemical constituents including polysaccharides, terpenoids, flavonoids, phenols, and phenylpropanoids. The Auxin Response Factor (ARF) is a pivotal transcription factor known for its regulatory role in both primary and secondary metabolite synthesis. However, our understanding of the ARF gene family in P. kingianum remains limited. METHODS AND RESULTS: We employed RNA-Seq to sequence three distinct tissues (leaf, root, and stem) of P. kingianum. The analysis revealed a total of 31,558 differentially expressed genes (DEGs), with 43 species of transcription factors annotated among them. Analyses via gene ontology and the Kyoto Encyclopedia of Genes and Genomes demonstrated that these DEGs were predominantly enriched in metabolic pathways and secondary metabolite biosynthesis. The proposed temporal expression analysis categorized the DEGs into nine clusters, suggesting the same expression trends that may be coordinated in multiple biological processes across the three tissues. Additionally, we conducted screening and expression pattern analysis of the ARF gene family, identifying 12 significantly expressed PkARF genes in P. kingianum roots. This discovery lays the groundwork for investigations into the role of PkARF genes in root growth, development, and secondary metabolism regulation. CONCLUSION: The obtained data and insights serve as a focal point for further research studies, centred on genetic manipulation of growth and secondary metabolism in P. kingianum. Furthermore, these findings contribute to the understanding of functional genomics in P. kingianum, offering valuable genetic resources.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Plant , Multigene Family , Plant Proteins , Plants, Medicinal , Polygonatum , Transcriptome , Plants, Medicinal/genetics , Plants, Medicinal/metabolism , Gene Expression Regulation, Plant/genetics , Polygonatum/genetics , Polygonatum/metabolism , Transcriptome/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Profiling/methods , Plant Roots/genetics , Plant Roots/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Ontology , Plant Leaves/genetics , Plant Leaves/metabolism
2.
Mol Biol Rep ; 51(1): 639, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727924

ABSTRACT

BACKGROUND: Peucedani Radix, also known as "Qian-hu" is a traditional Chinese medicine derived from Peucedanum praeruptorum Dunn. It is widely utilized for treating wind-heat colds and coughs accompanied by excessive phlegm. However, due to morphological similarities, limited resources, and heightened market demand, numerous substitutes and adulterants of Peucedani Radix have emerged within the herbal medicine market. Moreover, Peucedani Radix is typically dried and sliced for sale, rendering traditional identification methods challenging. MATERIALS AND METHODS: We initially examined and compared 104 commercial "Qian-hu" samples from various Chinese medicinal markets and 44 species representing genuine, adulterants or substitutes, utilizing the mini barcode ITS2 region to elucidate the botanical origins of the commercial "Qian-hu". The nucleotide signature specific to Peucedani Radix was subsequently developed by analyzing the polymorphic sites within the aligned ITS2 sequences. RESULTS: The results demonstrated a success rate of 100% and 93.3% for DNA extraction and PCR amplification, respectively. Forty-five samples were authentic "Qian-hu", while the remaining samples were all adulterants, originating from nine distinct species. Peucedani Radix, its substitutes, and adulterants were successfully identified based on the neighbor-joining tree. The 24-bp nucleotide signature (5'-ATTGTCGTACGAATCCTCGTCGTC-3') revealed distinct differences between Peucedani Radix and its common substitutes and adulterants. The newly designed specific primers (PR-F/PR-R) can amplify the nucleotide signature region from commercial samples and processed materials with severe DNA degradation. CONCLUSIONS: We advocate for the utilization of ITS2 and nucleotide signature for the rapid and precise identification of herbal medicines and their adulterants to regulate the Chinese herbal medicine industry.


Subject(s)
DNA Barcoding, Taxonomic , DNA, Plant , DNA, Plant/genetics , DNA Barcoding, Taxonomic/methods , Drugs, Chinese Herbal/standards , Apiaceae/genetics , Apiaceae/classification , Medicine, Chinese Traditional/standards , DNA, Ribosomal Spacer/genetics , Drug Contamination , Plants, Medicinal/genetics , Phylogeny , Sequence Analysis, DNA/methods , Polymerase Chain Reaction/methods , Nucleotides/genetics , Nucleotides/analysis
3.
BMC Plant Biol ; 24(1): 358, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38698337

ABSTRACT

BACKGROUND: Astragalus membranaceus var. mongholicus (Astragalus), acknowledged as a pivotal "One Root of Medicine and Food", boasts dual applications in both culinary and medicinal domains. The growth and metabolite accumulation of medicinal roots during the harvest period is intricately regulated by a transcriptional regulatory network. One key challenge is to accurately pinpoint the harvest date during the transition from conventional yield content of medicinal materials to high and to identify the core regulators governing such a critical transition. To solve this problem, we performed a correlation analysis of phenotypic, transcriptome, and metabolome dynamics during the harvesting of Astragalus roots. RESULTS: First, our analysis identified stage-specific expression patterns for a significant proportion of the Astragalus root genes and unraveled the chronology of events that happen at the early and later stages of root harvest. Then, the results showed that different root developmental stages can be depicted by co-expressed genes of Astragalus. Moreover, we identified the key components and transcriptional regulation processes that determine root development during harvest. Furthermore, through correlating phenotypes, transcriptomes, and metabolomes at different harvesting periods, period D (Nov.6) was identified as the critical period of yield and flavonoid content increase, which is consistent with morphological and metabolic changes. In particular, we identified a flavonoid biosynthesis metabolite, isoliquiritigenin, as a core regulator of the synthesis of associated secondary metabolites in Astragalus. Further analyses and experiments showed that HMGCR, 4CL, CHS, and SQLE, along with its associated differentially expressed genes, induced conversion of metabolism processes, including the biosynthesis of isoflavones and triterpenoid saponins substances, thus leading to the transition to higher medicinal materials yield and active ingredient content. CONCLUSIONS: The findings of this work will clarify the differences in the biosynthetic mechanism of astragaloside IV and calycosin 7-O-ß-D-glucopyranoside accumulation between the four harvesting periods, which will guide the harvesting and production of Astragalus.


Subject(s)
Astragalus propinquus , Metabolomics , Phenotype , Plant Roots , Plants, Medicinal , Transcriptome , Astragalus propinquus/metabolism , Astragalus propinquus/genetics , Astragalus propinquus/growth & development , Plant Roots/metabolism , Plant Roots/genetics , Plant Roots/growth & development , Plants, Medicinal/metabolism , Plants, Medicinal/genetics , Plants, Medicinal/growth & development , Gene Expression Regulation, Plant , Metabolome , Gene Expression Profiling
4.
BMC Biotechnol ; 24(1): 20, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637734

ABSTRACT

BACKGROUND: Obtaining high-quality chloroplast genome sequences requires chloroplast DNA (cpDNA) samples that meet the sequencing requirements. The quality of extracted cpDNA directly impacts the efficiency and accuracy of sequencing analysis. Currently, there are no reported methods for extracting cpDNA from Erigeron breviscapus. Therefore, we developed a suitable method for extracting cpDNA from E. breviscapus and further verified its applicability to other medicinal plants. RESULTS: We conducted a comparative analysis of chloroplast isolation and cpDNA extraction using modified high-salt low-pH method, the high-salt method, and the NaOH low-salt method, respectively. Subsequently, the number of cpDNA copies relative to the nuclear DNA (nDNA ) was quantified via qPCR. As anticipated, chloroplasts isolated from E. breviscapus using the modified high-salt low-pH method exhibited intact structures with minimal cell debris. Moreover, the concentration, purity, and quality of E. breviscapus cpDNA extracted through this method surpassed those obtained from the other two methods. Furthermore, qPCR analysis confirmed that the modified high-salt low-pH method effectively minimized nDNA contamination in the extracted cpDNA. We then applied the developed modified high-salt low-pH method to other medicinal plant species, including Mentha haplocalyx, Taraxacum mongolicum, and Portulaca oleracea. The resultant effect on chloroplast isolation and cpDNA extraction further validated the generalizability and efficacy of this method across different plant species. CONCLUSIONS: The modified high-salt low-pH method represents a reliable approach for obtaining high-quality cpDNA from E. breviscapus. Its universal applicability establishes a solid foundation for chloroplast genome sequencing and analysis of this species. Moreover, it serves as a benchmark for developing similar methods to extract chloroplast genomes from other medicinal plants.


Subject(s)
Genome, Chloroplast , Plants, Medicinal , DNA, Chloroplast/genetics , Plants, Medicinal/genetics , Chloroplasts/genetics , Chromosome Mapping , Phylogeny
5.
Cryo Letters ; 45(2): 122-133, 2024.
Article in English | MEDLINE | ID: mdl-38557991

ABSTRACT

BACKGROUND: Acorus calamus Linn. is a medicinally valuable monocot plant belonging to the family Acoraceae. Over-exploitation and unscientific approach towards harvesting to fulfill an ever-increasing demand have placed it in the endangered list of species. OBJECTIVE: To develop vitrification-based cryopreservation protocols for A. calamus shoot tips, using conventional vitrification and V cryo-plate. MATERIALS AND METHODS: Shoot tips (2 mm in size) were cryopreserved with the above techniques by optimizing various parameters such as preculture duration, sucrose concentration in the preculture medium, and PVS2 dehydration time. Regenerated plantlets obtained post-cryopreservation were evaluated by random amplified polymorphic DNA (RAPD) to test their genetic fidelity. RESULTS: The highest regrowth of 88.3% after PVS2 exposure of 60 min was achieved with V cryo-plate as compared to 75% after 90 min of PVS2 exposure using conventional vitrification. After cryopreservation, shoot tips developed into complete plantlets in 28 days on regrowth medium (0.5 mg/L BAP, 0.3 mg/L GA3, and 0.3 mg/L ascorbic acid). RAPD analysis revealed 100% monomorphism in all cryo-storage derived regenerants and in vitro donor (120-days-old) plants. CONCLUSION: Shoot tips of A. calamus that were cryopreserved had 88.3% regrowth using V cryo-plate technique and the regerants retained genetic fidelity. https://doi.org/10.54680/fr24210110412.


Subject(s)
Acorus , Plants, Medicinal , Cryopreservation/methods , Plants, Medicinal/genetics , Random Amplified Polymorphic DNA Technique , Plant Shoots/genetics , Vitrification , Cryoprotective Agents
6.
Sci Rep ; 14(1): 9662, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38671173

ABSTRACT

Calendula officinalis L.is a versatile medicinal plant with numerous applications in various fields. However, its chloroplast genome structure, features, phylogeny, and patterns of evolution and mutation remain largely unexplored. This study examines the chloroplast genome, phylogeny, codon usage bias, and divergence time of C. officinalis, enhancing our understanding of its evolution and adaptation. The chloroplast genome of C. officinalis is a 150,465 bp circular molecule with a G + C content of 37.75% and comprises 131 genes. Phylogenetic analysis revealed a close relationship between C. officinalis, C. arvensis, and Osteospermum ecklonis. A key finding is the similarity in codon usage bias among these species, which, coupled with the divergence time analysis, supports their close phylogenetic proximity. This similarity in codon preference and divergence times underscores a parallel evolutionary adaptation journey for these species, highlighting the intricate interplay between genetic evolution and environmental adaptation in the Asteraceae family. Moreover unique evolutionary features in C. officinalis, possibly associated with certain genes were identified, laying a foundation for future research into the genetic diversity and medicinal value of C. officinalis.


Subject(s)
Calendula , Evolution, Molecular , Genome, Chloroplast , Phylogeny , Plants, Medicinal , Plants, Medicinal/genetics , Calendula/genetics , Codon Usage , Base Composition , Chloroplasts/genetics
7.
Sci Data ; 11(1): 342, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580686

ABSTRACT

Silybum marianum (L.) Gaertn., commonly known as milk thistle, is a medicinal plant belonging to the Asteraceae family. This plant has been recognized for its medicinal properties for over 2,000 years. However, the genome of this plant remains largely undiscovered, having no reference genome at a chromosomal level. Here, we assembled the chromosome-level genome of S. marianum, allowing for the annotation of 53,552 genes and the identification of transposable elements comprising 58% of the genome. The genome assembly from this study showed 99.1% completeness as determined by BUSCO assessment, while the previous assembly (ASM154182v1) showed 36.7%. Functional annotation of the predicted genes showed 50,329 genes (94% of total genes) with known protein functions in public databases. Comparative genome analysis among Asteraceae plants revealed a striking conservation of collinearity between S. marianum and C. cardunculus. The genomic information generated from this study will be a valuable resource for milk thistle breeding and for use by the larger research community.


Subject(s)
Genome, Plant , Silybum marianum , Plant Breeding , Plants, Medicinal/genetics , Silybum marianum/genetics , Chromosomes, Plant
8.
Int J Biol Macromol ; 266(Pt 1): 131012, 2024 May.
Article in English | MEDLINE | ID: mdl-38522709

ABSTRACT

Medicinal tropane alkaloids (TAs), including hyoscyamine, anisodamine and scopolamine, are essential anticholinergic drugs specifically produced in several solanaceous plants. Atropa belladonna is one of the most important medicinal plants that produces TAs. Therefore, it is necessary to cultivate new A. belladonna germplasm with the high content of TAs. Here, we found that the levels of TAs were elevated under low nitrogen (LN) condition, and identified a LN-responsive bHLH transcription factor (TF) of A. belladonna (named LNIR) regulating the biosynthesis of TAs. The expression level of LNIR was highest in secondary roots where TAs are synthesized specifically, and was significantly induced by LN. Further research revealed that LNIR directly activated the transcription of hyoscyamine 6ß-hydroxylase gene (H6H) by binding to its promoter, which converts hyoscyamine into anisodamine and subsequently epoxidizes anisodamine to form scopolamine. Overexpression of LNIR upregulated the expression levels of TA biosynthesis genes and consequently led to the increased production of TAs. In summary, we functionally identified a LN-responsive bHLH gene that facilitated the development of A. belladonna with high-yield TAs under the decreased usage of nitrogen fertilizer.


Subject(s)
Atropa belladonna , Basic Helix-Loop-Helix Transcription Factors , Gene Expression Regulation, Plant , Mixed Function Oxygenases , Nitrogen , Tropanes , Nitrogen/metabolism , Gene Expression Regulation, Plant/drug effects , Atropa belladonna/metabolism , Atropa belladonna/genetics , Tropanes/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Medicinal/metabolism , Plants, Medicinal/genetics , Hyoscyamine/metabolism , Hyoscyamine/genetics , Scopolamine/metabolism , Promoter Regions, Genetic
9.
Trends Plant Sci ; 29(5): 510-513, 2024 May.
Article in English | MEDLINE | ID: mdl-38485645

ABSTRACT

With the rapid development of molecular sequencing and imaging technology, the multi-omics of medicinal plants enters the single-cell era. We discuss spatial multi-omics applied in medicinal plants, evaluate the special products' biosynthesis pathways, and highlight the applications, perspectives, and challenges of biomanufacturing natural products (NPs).


Subject(s)
Plants, Medicinal , Plants, Medicinal/genetics , Plants, Medicinal/metabolism , Biological Products/metabolism , Genomics/methods , Biosynthetic Pathways/genetics , Metabolomics/methods , Proteomics/methods , Multiomics
10.
Sci Rep ; 14(1): 6566, 2024 03 19.
Article in English | MEDLINE | ID: mdl-38503940

ABSTRACT

Four common Patrinia species, including P. heterophylla, P. monandra, P. scabiosifolia and P. villosa, have been documented as herbal medicines with various clinical applications, such as anti-cancer, anti-diarrhea and sedative. However, the authentication of medicinal Patrinia species poses a problem, particularly with the processed herbal materials. This study aimed to systematically authenticate the four medicinal Patrinia species in the market using morphological and chemical characterization, as well as DNA markers. We found the species identity authenticated by traditional morphologies were in good agreement with both chemical and molecular results. The four species showed species-specific patterns in chromatographic profiles with distinct chemical markers. We also revealed the power of complete chloroplast genomes in species authentication. The sequences of targeted loci, namely atpB, petA, rpl2-rpl23 and psaI-ycf4, contained informative nucleotides for the species differentiation. Our results also facilitate authentication of medicinal Patrinia species using new DNA barcoding markers. To the best of our knowledge, this is the first report on the application of morphology, chemical fingerprinting, complete chloroplast genomes and species-specific Insertion-Deletions (InDels) in differentiating Patrinia species. This study reported on the power of a systematic, multidisciplinary approach in authenticating medicinal Patrinia species.


Subject(s)
Patrinia , Plants, Medicinal , Patrinia/chemistry , Plants, Medicinal/genetics , Plants, Medicinal/chemistry
11.
Plant Physiol Biochem ; 208: 108524, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38518432

ABSTRACT

Plant secondary metabolites are important raw materials for the pharmaceutical industry, and their biosynthetic processes are subject to diverse and precise regulation by miRNA. The identification of miRNA molecules in medicinal plants and exploration of their mechanisms not only contribute to a deeper understanding of the molecular genetic mechanisms of plant growth, development and resistance to stress, but also provide a theoretical basis for elucidating the pharmacological effects of authentic medicinal materials and constructing bioreactors for the synthesis of medicinal secondary metabolite components. This paper summarizes the research reports on the discovery of miRNA in medicinal plants and their regulatory mechanisms on the synthesis of secondary metabolites by searching the relevant literature in public databases. It summarizes the currently discovered miRNA and their functions in medicinal plants, and summarizes the molecular mechanisms regulating the synthesis and degradation of secondary metabolites. Furthermore, it provides a prospect for the research and development of medicinal plant miRNA. The compiled information contributes to a comprehensive understanding of the research progress on miRNA in medicinal plants and provides a reference for the industrial development of related secondary metabolite biosynthesis.


Subject(s)
MicroRNAs , Plants, Medicinal , Plants, Medicinal/genetics , Plants, Medicinal/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Secondary Metabolism/genetics
12.
J Integr Plant Biol ; 66(3): 510-531, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38441295

ABSTRACT

The basis of modern pharmacology is the human ability to exploit the production of specialized metabolites from medical plants, for example, terpenoids, alkaloids, and phenolic acids. However, in most cases, the availability of these valuable compounds is limited by cellular or organelle barriers or spatio-temporal accumulation patterns within different plant tissues. Transcription factors (TFs) regulate biosynthesis of these specialized metabolites by tightly controlling the expression of biosynthetic genes. Cutting-edge technologies and/or combining multiple strategies and approaches have been applied to elucidate the role of TFs. In this review, we focus on recent progress in the transcription regulation mechanism of representative high-value products and describe the transcriptional regulatory network, and future perspectives are discussed, which will help develop high-yield plant resources.


Subject(s)
Alkaloids , Plants, Medicinal , Humans , Plants, Medicinal/genetics , Plants, Medicinal/metabolism , Alkaloids/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Plant , Terpenes/metabolism
13.
BMC Plant Biol ; 24(1): 195, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38493110

ABSTRACT

BACKGROUND: The sustainable supply of medicinal plants is important, and cultivating and domesticating them has been suggested as an optimal strategy. However, this can lead to a loss of genetic diversity. Tripterygium wilfordii Hook. f. is a medicinal plant commonly used in traditional Chinese medicine, but its wild populations are dwindling due to excessive harvesting. To protect the species and meet the increasing demand, it is urgent to cultivate it on a large scale. However, distinguishing between T. wilfordii and T. hypoglaucum, two similar species with different medicinal properties, is challenging. Therefore, it is crucial to understand the genetic diversity and population structure of these species for their sustainable utilization. RESULTS: In this study, we investigated the genetic diversity and population structure of the two traditional medicinal semiwoody vines plant species, Tripterygium wilfordii and T. hypoglaucum, including wild and cultivated populations using chloroplast DNA (cpDNA) sequences and microsatellite loci. Our results indicated that the two species maintain a high level of genetic divergence, indicating possible genetic bases for the different contents of bioactive compounds of the two species. T. wilfordii showed lower genetic diversity and less subdivided population structures of both markers than T. hypoglaucum. The potential factors in shaping these interesting differences might be differentiated pollen-to-seed migration rates, interbreeding, and history of population divergence. Analyses of cpDNA and microsatellite loci supported that the two species are genetically distinct entities. In addition, a significant reduction of genetic diversity was observed for cultivated populations of the two species, which mainly resulted from the small initial population size and propagated vegetative practice during their cultivation. CONCLUSION: Our findings indicate significant genetic divergence between T. wilfordii and T. hypoglaucum. The genetic diversity and population structure analyses provide important insights into the sustainable cultivation and utilization of these medicinal plants. Accurate identification and conservation efforts are necessary for both species to ensure the safety and effectiveness of crude drug use. Our study also highlighted the importance of combined analyses of different DNA markers in addressing population genetics of medicinal plants because of the contrasts of inheritance and rates of gene flow. Large-scale cultivation programs should consider preserving genetic diversity to enhance the long-term sustainability of T. wilfordii and T. hypoglaucum. Our study proposed that some populations showed higher genetic diversity and distinctness, which can be considered with priority for conservation and as the sources for future breeding and genetic improvement.


Subject(s)
Celastraceae , Plants, Medicinal , Tripterygium/genetics , Tripterygium/chemistry , Celastraceae/genetics , Plant Breeding , Genetics, Population , Plants, Medicinal/genetics , DNA, Chloroplast/genetics , Genetic Variation
14.
Braz J Biol ; 84: e278393, 2024.
Article in English | MEDLINE | ID: mdl-38422290

ABSTRACT

Artemisia vulgaris L. belongs to Asteraceae, is a herbal plant that has various benefits in the medical field, so that its use in the medical field can be explored optimally, the plant must be thoroughly identified. This study aims to identify A. vulgaris both in terms of descriptive morpho-anatomy and DNA barcoding using BLAST and phylogenetic tree reconstruction. The morpho-anatomical character was observed on root, stem, and leaf. DNA barcoding analysis was carried out through amplification and alignment of the rbcL and matK genes. All studies were conducted on three samples from Taman Husada (Medicinal Plant Garden) Graha Famili Surabaya, Indonesia. The anatomical slide was prepared by the paraffin method. Morphological studies revealed that the leaves of A. vulgaris both on the lower-middle part and on the upper part of the stem have differences, especially in the character of the stipules, petioles, and incisions they have. Meanwhile, from the study of anatomy, A. vulgaris has an anomocytic type of stomata and its distribution is mostly on the ventral part of the leaves. Through the BLAST process and phylogenetic tree reconstruction, the plant sequences being studied are closely related to several species of the genus Artemisia as indicated by a percentage identity above 98% and branch proximity between taxa in the reconstructed phylogenetic tree.


Subject(s)
DNA Barcoding, Taxonomic , Plants, Medicinal , DNA Barcoding, Taxonomic/methods , DNA, Plant/genetics , Phylogeny , Plants, Medicinal/genetics , Plant Leaves/genetics
15.
Genes (Basel) ; 15(2)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38397145

ABSTRACT

Rehmannia glutinosa, a member of the Scrophulariaceae family, has been widely used in traditional Chinese medicine since ancient times. The main bioactive component of R. glutinosa is catalpol. However, the biogenesis of catalpol, especially its downstream pathway, remains unclear. To identify candidate genes involved in the biosynthesis of catalpol, transcriptomes were constructed from R. glutinosa using the young leaves of three cultivars, Beijing No. 3, Huaifeng, and Jin No. 9, as well as the tuberous roots and adventitious roots of the Jin No. 9 cultivar. As a result, 71,142 unigenes with functional annotations were generated. A comparative analysis of the R. glutinosa transcriptomes identified over 200 unigenes of 13 enzymes potentially involved in the downstream steps of catalpol formation, including 9 genes encoding UGTs, 13 for aldehyde dehydrogenases, 70 for oxidoreductases, 44 for CYP450s, 22 for dehydratases, 30 for decarboxylases, 19 for hydroxylases, and 10 for epoxidases. Moreover, two novel genes encoding geraniol synthase (RgGES), which is the first committed enzyme in catalpol production, were cloned from R. glutinosa. The purified recombinant proteins of RgGESs effectively converted GPP to geraniol. This study is the first to discover putative genes coding the tailoring enzymes mentioned above in catalpol biosynthesis, and functionally characterize the enzyme-coding gene in this pathway in R. glutinosa. The results enrich genetic resources for engineering the biosynthetic pathway of catalpol and iridoids.


Subject(s)
Acyclic Monoterpenes , Iridoid Glucosides , Plants, Medicinal , Rehmannia , Plants, Medicinal/genetics , Rehmannia/genetics , Rehmannia/metabolism , Gene Expression Profiling
16.
Funct Plant Biol ; 512024 Feb.
Article in English | MEDLINE | ID: mdl-38316513

ABSTRACT

Pinellia ternata is an important natural medicinal herb in China. However, it is susceptible to withering when exposed to high temperatures during growth, which limits its tuber production. Mitochondria usually function in stress response. The P . ternata mitochondrial (mt) genome has yet to be explored. Therefore, we integrated PacBio and Illumina sequencing reads to assemble and annotate the mt genome of P . ternata . The circular mt genome of P . ternata is 876 608bp in length and contains 38 protein-coding genes (PCGs), 20 tRNA genes and three rRNA genes. Codon usage, sequence repeats, RNA editing and gene migration from chloroplast (cp) to mt were also examined. Phylogenetic analysis based on the mt genomes of P . ternata and 36 other taxa revealed the taxonomic and evolutionary status of P . ternata . Furthermore, we investigated the mt genome size and GC content by comparing P . ternata with the other 35 species. An evaluation of non-synonymous substitutions and synonymous substitutions indicated that most PCGs in the mt genome underwent negative selection. Our results provide comprehensive information on the P . ternata mt genome, which may facilitate future research on the high-temperature response of P . ternata and provide new molecular insights on the Araceae family.


Subject(s)
Genome, Mitochondrial , Pinellia , Plants, Medicinal , Pinellia/genetics , Genome, Mitochondrial/genetics , Phylogeny , Plants, Medicinal/genetics , Plant Tubers
17.
Gene ; 910: 148303, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38401835

ABSTRACT

Grubs, called Qicao in China, have a long tradition as herbal medicine in East Asia. These larvae belong to the diverse family Scarabaeidae and are typically harvested from the wild during their immature stage based on morphological characteristics. However, rapid and accurate identification becomes challenging when relying solely on external morphological features, as the lack of clarity on biological sources raises safety concerns for clinical applications. The application of DNA metabarcoding provides a solution by enabling the determination of the biological source of a large sample. In the current study, we collected 19 batches of Grubs, consisting of 11,539 individuals, from the market and analyzed their biological composition through metabarcoding. We identified 49 Amplicon Sequence Variants (ASVs), 21 of which were Grubs. The 21 ASVs were classified into seven Molecular Operational Taxonomic Units (MOTUs) through species delimitation, which revealed that commercially available Grubs are predominantly sourced from Protaetia brevitarsis seulensis, while species of Rutelinae, Anomala, and Holotrichia were also abundant in some commercial batches. Among the identified ASVs, 28 belonged to non-Grub species and indicated adulteration from different animal families; high abundances of these ASVs were detected for Bombycidae, Tabanidae, and Viviparidae. Our findings underscore the complexity of Grubs' species composition and advocate for a deeper understanding of the wildlife sources contributing to herbal products. This research contributes valuable insights into the molecular identification of Grubs, paving the way for enhanced quality assurance in traditional medicine applications to provide safe and effective medicines for humanity.


Subject(s)
Coleoptera , Plants, Medicinal , Animals , Larva/genetics , Medicine, Traditional , Plant Extracts , Plants, Medicinal/genetics
18.
Sci Rep ; 14(1): 2799, 2024 02 02.
Article in English | MEDLINE | ID: mdl-38307917

ABSTRACT

Tinospora cordifolia (Willd.) Hook.f. & Thomson, also known as Giloy, is among the most important medicinal plants that have numerous therapeutic applications in human health due to the production of a diverse array of secondary metabolites. To gain genomic insights into the medicinal properties of T. cordifolia, the genome sequencing was carried out using 10× Genomics linked read and Nanopore long-read technologies. The draft genome assembly of T. cordifolia was comprised of 1.01 Gbp, which is the genome sequenced from the plant family Menispermaceae. We also performed the genome size estimation for T. cordifolia, which was found to be 1.13 Gbp. The deep sequencing of transcriptome from the leaf tissue was also performed. The genome and transcriptome assemblies were used to construct the gene set, resulting in 17,245 coding gene sequences. Further, the phylogenetic position of T. cordifolia was also positioned as basal eudicot by constructing a genome-wide phylogenetic tree using multiple species. Further, a comprehensive comparative evolutionary analysis of gene families contraction/expansion and multiple signatures of adaptive evolution was performed. The genes involved in benzyl iso-quinoline alkaloid, terpenoid, lignin and flavonoid biosynthesis pathways were found with signatures of adaptive evolution. These evolutionary adaptations in genes provide genomic insights into the presence of diverse medicinal properties of this plant. The genes involved in the common symbiosis signalling pathway associated with endosymbiosis (Arbuscular Mycorrhiza) were found to be adaptively evolved. The genes involved in adventitious root formation, peroxisome biogenesis, biosynthesis of phytohormones, and tolerance against abiotic and biotic stresses were also found to be adaptively evolved in T. cordifolia.


Subject(s)
Alkaloids , Plants, Medicinal , Tinospora , Humans , Plants, Medicinal/genetics , Tinospora/genetics , Tinospora/metabolism , Phylogeny , Plant Extracts/metabolism , Alkaloids/metabolism
19.
Gene ; 893: 147937, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38381509

ABSTRACT

Next-generation sequencing (NGS) has revolutionized the analysis of specific genes, pathways, and their regulation in various species. Tribulus terrestris L., an annual medicinal herb of Zygophyllaceae family, has gained significant attention due to its diverse medicinal properties, including anti-inflammatory, antimicrobial, and anti-cancer effects. Diosgenin, a steroidal saponin, is the major bioactive compound responsible for the medicinal importance of T. terrestris. However, there is a paucity of information regarding the genes involved in the diosgenin biosynthetic pathway in T. terrestris. To address this gap, this study aimed to identify candidate genes associated with diosgenin biosynthesis through whole transcriptome profiling. A total of ∼7.9 GB of data, comprising 482 million reads, was obtained and assembled into 148,871 unigenes. Subsequently, functional annotations were assigned to 50 % of the unigenes using sequence similarity searches against the NCBI non-redundant (NR), Uniprot, KEGG, Pfam, GO, and COG databases, primarily based on Gene Ontology and KEGG-KAAS pathways. The majority of unigenes associated with the biosynthesis of the steroidal diosgenin backbone exhibited up-regulation in the fruit, leaf, and root tissues, except the SQE gene in root. The differential expression of selected genes was further validated through quantitative real-time polymerase chain reaction (qRT-PCR). Additionally, the study identified 21,026 unigenes related to transcription factors and 15,551 unigenes containing simple sequence repeats (SSR). Notably, di-nucleotide SSR motifs exhibited a high repeat frequency. These findings greatly enhance our understanding of the diosgenin biosynthesis pathway and provide a basis for future research in molecular investigation and metabolic engineering, specifically for boosting diosgenin content.


Subject(s)
Diosgenin , Plants, Medicinal , Tribulus , Tribulus/genetics , Plants, Medicinal/genetics , Databases, Factual , Gene Expression Profiling
20.
BMC Plant Biol ; 24(1): 105, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38342903

ABSTRACT

BACKGROUND: Nitrogen (N) metabolism-related key genes and conserved amino acid sites in key enzymes play a crucial role in improving N use efficiency (NUE) under N stress. However, it is not clearly known about the molecular mechanism of N deficiency-induced improvement of NUE in the N-sensitive rhizomatous medicinal plant Panax notoginseng (Burk.) F. H. Chen. To explore the potential regulatory mechanism, the transcriptome and proteome were analyzed and the three-dimensional (3D) information and molecular docking models of key genes were compared in the roots of P. notoginseng grown under N regimes. RESULTS: Total N uptake and the proportion of N distribution to roots were significantly reduced, but the NUE, N use efficiency in biomass production (NUEb), the recovery of N fertilizer (RNF) and the proportion of N distribution to shoot were increased in the N0-treated (without N addition) plants. The expression of N uptake- and transport-related genes NPF1.2, NRT2.4, NPF8.1, NPF4.6, AVP, proteins AMT and NRT2 were obviously up-regulated in the N0-grown plants. Meanwhile, the expression of CIPK23, PLC2, NLP6, TCP20, and BT1 related to the nitrate signal-sensing and transduction were up-regulated under the N0 condition. Glutamine synthetase (GS) activity was decreased in the N-deficient plants, while the activity of glutamate dehydrogenase (GDH) increased. The expression of genes GS1-1 and GDH1, and proteins GDH1 and GDH2 were up-regulated in the N0-grown plants, there was a significantly positive correlation between the expression of protein GDH1 and of gene GDH1. Glu192, Glu199 and Glu400 in PnGS1 and PnGDH1were the key amino acid residues that affect the NUE and lead to the differences in GDH enzyme activity. The 3D structure, docking model, and residues of Solanum tuberosum and P. notoginseng was similar. CONCLUSIONS: N deficiency might promote the expression of key genes for N uptake (genes NPF8.1, NPF4.6, AMT, AVP and NRT2), transport (NPF1.2 and NRT2.4), assimilation (proteins GS1 and GDH1), signaling and transduction (genes CIPK23, PLC2, NLP6, TCP20, and BT1) to enhance NUE in the rhizomatous species. N deficiency might induce Glu192, Glu199 and Glu400 to improve the biological activity of GS1 and GDH, this has been hypothesized to be the main reason for the enhanced ability of N assimilation in N-deficient rhizomatous species. The key genes and residues involved in improving NUE provide excellent candidates for the breeding of medicinal plants.


Subject(s)
Panax notoginseng , Plants, Medicinal , Nitrogen/metabolism , Plants, Medicinal/genetics , Plants, Medicinal/metabolism , Panax notoginseng/genetics , Panax notoginseng/metabolism , Molecular Docking Simulation , Plant Breeding , Amino Acids/metabolism , Gene Expression Regulation, Plant
SELECTION OF CITATIONS
SEARCH DETAIL
...